Logic

Important for 1. understanding mathematical reasoning
2. design of computer circuits
3. construction of computer programs
4. verification of correctness of programs

Def. A proposition is a statement which is true or false (but not both)

Letters are used to denote propositions: \(\rho, \sigma, \tau, \theta, \ldots \)

Def. Truth value of a proposition is either T (true) or F (false).

Def. Compound propositions are formed from existing propositions using logical operators

Def. Negation of \(\rho \), \(\overline{\rho} \) (other texts use \(\neg \rho \))

A truth table displays the function values of operators

\[T : \{ T, F \} \rightarrow \{ T, F \} \]

Truth table:

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\overline{\rho})</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Def. Conjunction of \(\rho \) and \(\sigma \), \(\rho \land \sigma \), \(\rho \) "and" \(\sigma \)

\[\land : \{ T, F \} \times \{ T, F \} \rightarrow \{ T, F \} \]

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\sigma)</th>
<th>(\rho \land \sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Def. Disjunction of \(\rho \) and \(\sigma \), \(\rho \lor \sigma \), \(\rho \) "or" \(\sigma \)

\[\lor : \{ T, F \} \times \{ T, F \} \rightarrow \{ T, F \} \] "Inclusive or"

<table>
<thead>
<tr>
<th>(\rho)</th>
<th>(\sigma)</th>
<th>(\rho \lor \sigma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Def: The exclusive or of \(p \) and \(q \), \(p \oplus q \)
\[\oplus : \{T,F\} \times \{T,F\} \rightarrow \{T,F\} \]

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \oplus q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Def: The implication of \(p \) and \(q \), denoted \(p \rightarrow q \)
\[\rightarrow : \{T,F\} \times \{T,F\} \rightarrow \{T,F\} \]

\[\begin{array}{c|c|c}
 p & q & p \rightarrow q \\
 T & T & T \\
 T & F & F \\
 F & T & T \\
 F & F & T \\
\end{array} \]

if \(p \) then \(q \)
\(p \) implies \(q \)
if \(p \), \(q \)
\(p \) only if \(q \)
\(q \) if \(p \)
\(q \) is sufficient for \(p \)
\(q \) is necessary for \(p \)
\(q \) whenever \(p \)

Note: If...THEN... in computer programming is different from
If...then... in logic.

If \(p \) then \(s \)
if \(p \) is true, execute \(s \)
if \(p \) is false, do not execute \(s \)

Def: The converse of \(p \rightarrow q \) is \(q \rightarrow p \)
The contrapositive of \(p \rightarrow q \) is \(\neg q \rightarrow \neg p \)
The inverse of \(p \rightarrow q \) is \(\neg p \rightarrow \neg q \)

<table>
<thead>
<tr>
<th>(p)</th>
<th>(q)</th>
<th>(p \rightarrow q)</th>
<th>(q \rightarrow p)</th>
<th>(\neg q \rightarrow \neg p)</th>
<th>(\neg p \rightarrow \neg q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

\[p \rightarrow q \equiv \neg q \rightarrow \neg p \]
\[q \rightarrow p \equiv \neg p \rightarrow \neg q \]
Def the biconditional of p and q, $p \iff q$, p "iff" q,
\[\iff : \{T,F\} \times \{T,F\} \rightarrow \{T,F\} \]
\[
\begin{array}{c|c|c}
 p & q & p \iff q \\
\hline
 T & T & T \\
 T & F & F \\
 F & T & F \\
 F & F & T \\
\end{array}
\]

Def Bit - one or zero
Allow $F = 0$ $T = 1$

Def Bit operators OR, AND, XOR
 correspond to V, \land, \oplus

Ex:

\[
\begin{array}{cccccccc}
0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\
\end{array}
\]

bitwise OR

bitwise AND

bitwise XOR

Def. A tautology is a compound proposition which
is always true: $p \lor p$
A Contradiction is a compound proposition which
is always false: $p \land \neg p$
A contingency is a compound proposition which
is neither a tautology nor a contradiction

* Compound propositions which have the same truth table are logically equivalent.
To prove $p \iff q$, show p and q have same truth table.
Theorem: Logical Equivalences.

De Morgan's Laws:

\[7(p \lor q) \iff 7p \land 7q \]
\[7(p \land q) \iff 7p \lor 7q \]
\[7p \lor 7q \iff p \to q \]

Distributive Laws:

\[p \lor (q \land r) \iff (p \lor q) \land (p \lor r) \]
\[p \land (q \lor r) \iff (p \land q) \lor (p \land r) \]

Proof:

<table>
<thead>
<tr>
<th>p</th>
<th>q</th>
<th>(q \lor r)</th>
<th>(p \lor (q \lor r))</th>
<th>(p \lor q)</th>
<th>(p \lor r)</th>
<th>((p \lor q) \land (p \lor r))</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

LHS = RHS

Note: A compound proposition with \(n \) propositions will have \(2^n \) rows in its truth table.
Rules of Inference

Draw a conclusion or derive a new assertion from old assertions.

Def An argument is a set of premises followed by a conclusion: \[p_1, p_2, \ldots, p_n \rightarrow C \]

Argument is valid or invalid.

Def An argument is valid if whenever the premises are true then the conclusion is true.

An argument is invalid if the conclusion can be false when all the premises are true.

Thm. To test the validity of an argument, construct the truth table \((p_1 \land p_2 \land \ldots \land p_n) \rightarrow C\).

If it is a tautology, the argument is valid.

If it is not a tautology, the argument is invalid.

Note: Validity of the argument should not be confused with the truth or falsity of the premises and/or the conclusion.

Arguments:

1. \[p \rightarrow q \]
 \[\begin{array}{c|c|c}
 p & q & (p \rightarrow q) \rightarrow q \\
 \hline
 T & T & T \\
 T & F & T \\
 F & T & F \\
 F & F & T \\
 \end{array} \]

 Valid.

2. \[p \rightarrow q \]
 \[\begin{array}{c|c|c}
 q & p & (p \rightarrow q) \rightarrow p \\
 \hline
 T & T & F \\
 T & F & T \\
 F & T & T \\
 F & F & T \\
 \end{array} \]

 Invalid

3. \[p \rightarrow q \]
 \[\begin{array}{c|c|c|c|c|c}
 q & p & (p \rightarrow q) \rightarrow q & T & T & T \\
 \end{array} \]

 Valid
Ex. Prove valid or invalid:

1. If the client was guilty, then he was at the scene of the crime. The client was not at the scene of the crime. Hence, the client was not guilty:
 \[p \rightarrow q \]
 \[q \rightarrow r \]
 \[\therefore \ p \rightarrow r \]

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>R</th>
<th>(P \rightarrow Q) \land (Q \rightarrow R) \rightarrow P \rightarrow R</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

 Valid.

2. If David passes the final exam, then he will pass the course. David passes the course. Hence, he passed the final exam.
 \[p \rightarrow q \]
 \[q \rightarrow p \]
 \[\therefore \ q \rightarrow p \]

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>T</th>
<th>(P \rightarrow Q) \land (Q \rightarrow P) \rightarrow T</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

 Valid.

3. The governor will call a special session if the Senate cannot reach a compromise. If a majority of the Cabinet are in agreement then the governor will not call a special session. Therefore, the governor will not call a special session.
 \[p = \text{Senate cannot reach a compromise} \]
 \[q = \text{Governor call special session} \]
 \[r = \text{Majority cabinet in agreement} \]
 \[T \rightarrow q \]
 \[p \rightarrow r \]
 \[\therefore \ q \rightarrow r \]
$\begin{array}{c c c c c c c}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
T & T & F & T & T & F & T \\
T & T & F & F & T & T & T \\
T & F & F & F & T & T & T \\
T & T & T & T & T & T & T \\
F & F & F & T & T & T & T \\
T & T & T & T & T & T & T \\
\hline
\end{array}$

Invalid

Shortcut:

$\begin{align*}
0 & : 7r \to (s \to 7t) \\
1 & : 7r \lor w \\
2 & : 7p \to s \\
3 & : 7w \\
\therefore & : t \to p
\end{align*}$

$\begin{array}{c|c|c|c|c|c|c}
\ p & \ r & \ s & \ t & \ w & [012345678] \to 5 \\
\hline
F & F & T & T & T & T & F \\
\end{array}$

Argument Valid unless conclusion = F

$t \to p = F, t = T, p = F$

Argument Valid unless premises = T

$\neg w = T, w = F$

$7r \lor w = T, w = F, 7r = T \land r = F$

$7p \to s = T, p = F, T \to s = T \lor s = T$

But $p = F, r = F, s = T, t = T, w = F$

makes $7r \to (s \to 7t) = T \to (T \to F) = T \to F = F$

No way to make premises true and conclusion false, so argument is valid

Direct Method of Proof (Formal proof for above)

$\begin{align*}
7r & \to (s \to 7t) \\
7r \lor w & \\
7p & \to s \\
7w & \\
7r & \\
s & \to 7t & \\
7p & \to 7t & \\
t & \to p & \\
\begin{align*}
(7r \lor w) & \land 7w \tag{1} \\
(7r \to (s \to 7t)) & \land 7r \tag{2} \\
(7p \to s) & \land (s \to 7t) \tag{3} \\
converse & \text{positive} & \\
\therefore & p \to r & \\
\end{align*}
\end{align*}$
Propositional Functions and Quantifiers

Def. A propositional function, \(P(x) \) is true or false for each \(x \in U \).

e.g. \(U = \mathbb{Z} \) \(P(x) \): "\(x > 3 \)" \(P(4) = T \), \(P(2) = F \)

In general \(P(x_1, x_2, \ldots, x_n) \) is a propositional function of \(n \) variables.

Def. The universal quantification of \(P(x) \):
"\(P(x) \) is true for all \(x \) in the universe"
\(\forall x \ P(x) \) (for every \(x \))

Ex. Let \(U = \mathbb{Z} \) let \(P(x) \): "\(x + 1 > x \)"
\(\forall x \ P(x) = T \)

let \(Q(x) \): "\(x > 2 \)"
\(\forall x \ Q(x) = F \)

Def. The existential quantification of \(P(x) \) is
"there exists an element \(x \) such that \(P(x) \) is true"
\(\exists x \ P(x) \) (there is an \(x \), there is at least one \(x \), for some \(x \))

Ex. Let \(U = \mathbb{Z} \) let \(P(x) \): "\(x > 3 \)"
\(\exists x \ P(x) = T \)

let \(Q(x) \): "\(x + 1 = x \)"
\(\exists x \ Q(x) = F \)

Commutative law of Addition: \(U = \text{Reals} \)
\(\forall x \forall y \ x + y = y + x \)

Additive Inverse law: \(U = \text{Reals} \)
\(\forall x \exists y \ x + y = 0 \)

Associative law of Addition: \(U = \text{Reals} \)
\(\forall x \forall y \forall z \ x + (y + z) = (x + y) + z \)
Translating Sentences into Logical Expressions

Ex. "Some student in this class has visited Mexico"
\[U = \text{students in class} \]
\[M(x): x \text{ has visited Mexico} \]
\[\exists x \ M(x) \]

Ex. "Every student in this class has visited either Mexico or Canada"
\[C(x): x \text{ has visited Canada.} \]
\[\forall x \ (M(x) \lor C(x)) \]

<table>
<thead>
<tr>
<th>Negations</th>
<th>Equivalent Statement</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\neg \exists x \ P(x))</td>
<td>(\forall x \neg P(x)) \quad (P(x) \text{ false for every } x)</td>
</tr>
<tr>
<td>(\neg \forall x \ P(x))</td>
<td>(\exists x \neg P(x)) \quad (there is one } x \text{ for which } P(x) \text{ is false}</td>
</tr>
</tbody>
</table>

Ex. \(\forall x \exists y \ (\exists x \ A(x,y) \lor \forall x \ B(x,y)) \]

\[= \forall y \ (\forall x \neg A(x,y) \lor \exists x \ B(x,y)) \]

Ex. Negate the following sentences. Put negation next to the propositional function:

(1) "No one has lost more than $1000 playing the lottery"
\[L(x) = x \text{ has lost more than $1000 playing the lottery} \]
\[\forall x \neg L(x) \]

To negate:
\[\neg \forall x \neg L(x) = \exists x \neg L(x) = \exists x \ L(x) \]
"Someone has lost more than $1000 playing the lottery."
There is a student in class who has passed the final and received a grade of C.

\[P(x): x \text{ passed final} \quad C(x): x \text{ received grade of C} \]

\[\exists x \ (P(x) \land C(x)) \]

To negate: \[\neg (\exists x \ (P(x) \land C(x))) = \forall x \ (\neg P(x) \lor \neg C(x)) \]

"All students in class have not passed the final or not received a grade of C."